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There is examined the plane homogeneous problem of elasticity theory on the 
equilibrium of an infinite wedge in whose bisector plane there is an inner rect- 
ilinear semi-in&rite crack. The wedge faces and the crack edgu are load- 
free. The stresses tend to zero at infinity but their principal vector and pdnci- 
pal moment differ from zero and are given by a condition. The problem is 
reduced to solving a Wiener - Hopf functional equation by using a M&in trans- 
formation. An exact solution of the equation is given and the stress intensity 
coefficient at the crack vertex is calculated. 

l. Form ulatfon of the problem. Letusconsidertheeouilibrium 
of an infinite elastic wedge with apertnre angle 2a (0 < a \< n), in whose bisector 
plane there is an infinite crack for II = 0, x > 1 (Fig. 1). The wedge faces and 
crack edges are load-free. The strcases tend to zero at infinity, but their principal 
vector and principal moment differ from zero and equal (0, Y) and M, rtrpsctiv- 
ely. 

Fig. 1 Fig. 2 

The ligament y =O, Ocx<l betweenUlelower--<(<OOandupp- 
er 0 ( 0 ( a wedge therefore transmits the @var force (0, Y) and the given mom- 
ent M. 

The bauxiary conditions of the problem have the form 
0 = cc, oa = Z& = 0 

8 = 0, z* = 0 

(1. 1) 

e-0, r<z, 2-0 
0 =0, r>Z, %=O 
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406, ‘G,+J, Q, are the stresses, and r&, U, the displacement& 
N o t e. The normal displacement q+, and not just its second derivative with 

respect to the radius is zero, as is written in the fint condition of (1.21, as follows 
from the continuity of the displacements at the ligament and from the symmetry of 
the problem. I-iowever, the stresses in a problem with the condition 3 = 0, r < 1, 
u8= 0 will be the same as the stresses in a problem with the condition 8 = 0, I < 1, 
i%@/ &J= 0 (when all the remaining conditions are retained), 

By assumption, the relationships 

t 

s 08 (r, 0) dr = Y, {o*(r,O)rdr = A4 
0 0 

il. 3) 

are valid. 
Information will later be required about the roots of the equation 

A rza sin 2pa + p sin 2a = 0 ( 1.4) 

(p is a complex number) in the strip 0 < Re p ( 1. 
It is known that (1.4) has no roots in the mentioned strip for 0 < a < n / 2 Cl]. 
L e m m a. For any a (n I 2 < a < n) , the equation A (p) = 0 has a 

u~~er~tin~edoma~ O< Rep< 1, Imp >O, Thiarootiarealandbe- 
longs to the interval (I/%, 1). 

We shall not present the proof of the lemma which is based on passing from (1.4) 
to an appropriate real system and using the apparatus of differential calculus. 

The problem under consideration is a homogeneous, singular problem of elasticity 
theory whose ~~~~ti~ are the crack vertex, the wedge apex, and the infinitely re- 
mote point. The boundary value problem at the singularities is not defined. Addition- 
al conditions at the singularities should be formulated in the formulation of the correct 
singular boundary value problem. The following assertion is used to formulate these 
conditions 123: The solution of the correct boundary value problem of elasticity theory 
behaves in an infinitesimal neighborhood of a singularity as the eigeniimction asymp- 
totically greatest in absolute value, which corresponds to the canonical singular prob- 
lem. 

The passage from the initial problem to the corresponding canonical singular prob- 
lems, which is realized by using the ” microscope principle”, and the investigation 
of these latter (see [2] 1 show that the condition 

9 = 0, r + I - 0, Be M K1 [ZJE (1 - T)]-*/’ (1.5) 

6=+0, r-,Z+O, 
a%* 
a,z u - (1 - Y”) E”Kr (231)~‘/’ (F - I)-” ‘2 

can be formulated at the crack apex (E is Young’s modulus, v is the Poisson’s ratio, 
KI is the stress intensity coefficient at the crack apex) and the following condition 

at the wedge vertex (h = h (a) 
1, and A. is a real constant). 

F+O 
(1.6) 

(O<a<Tct/Z) 

/ rl-h (3x / 2 < a < 3t) 

is the unique root of (1.4) in the strip 0 < Rep ( 
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Fig. 3 Fig. 4 

We apply tht micmmwe Principle to the initial problem to formulate the condit- 
ionsatinfinity. Let r/l-too. ‘i’Ms can be reelized for I- + 00,. 1 = const 
ad for )* X= con% I + 0. The pawge to the Umit r = comb, I ~jr 0 corm- 

pmds to - Wr Umit @tsm bee Fig. 21. Two wedgea with stef#ra! feces, 
Wb VtiCul are Combipsd 2t the mr0 point, are &Own in the figure_ The force 
(0, Y) ad the momcIIt &f act at th apex of the upper wedge, and the force (0; - 
y) and the moment - f%? at the apex of the lower wedge, The sr&~tton of this 

pz+lm fs the aqmptote at i&?&y for the solutfon of the itiff& probI_ in particul- 
ar, the relation 

e==+o, r-+00 (1,V 

a%.$ 4cosa M 
6ta aoosa-sma -7 ) 

holds. 
Therefore, the noutrivial solution of th homogenwa problem (I. 1) aud (L2))und- 

er the ;tdditfsmol conditiona (1.5) - (1.7) at the singularitia are to be found. 
Withoat umitlng the generality, the spacing between the wedge vertssc and the 

crack aput can be cousidered unity. 
Undsrarvedly little attention has beeo spent on the investigation of nqntrivial soi- 

utions of bomogeaeau problems of cl&&y theory. This is explained by t&wide- 
spread conviction that only the trivial sol&k%~ of such prcblm exisb accdd~g to the 
uniquewas theorem. This latter is true for problems of the class S @be Saint- %mnt 
pdnciple is valid in this class of probkms), A nontrivial solution of homogeneous prob- 
lems [Z] exists in problem of the class N (the Saint- Veaant principle does not hold 
in this class of problems). Namely, as a rule these problems are of greatest pticitcal 
value. Wheu problems of the clas iV must be solved, researchers ordimily limit 
thcmmlv~ to the ctt~b~W of a unique s&tion of the inhomogeneous prMem ami 
neglect the form of the homog&oes tolutiom. 

AS an ilkstrati- let us examin& the Imown invtrtigation of Khspkov C31. 
The problem for a wedge with a ~rnrn~c rmW@r crack emd%@Qg from 

the wcdgc a.~@ irr c&&r&d by Khrapk~v, The wedge angle is cp (Fig. 3). It is 
aat& that the wedge facea are free, while arbitrary loads ‘are ap@fcd to the crack 
edge. it is -mod that the stresses tend to zero as an additional conditiefl at *finitYe 
This utter condition is sufficient for the sxbttnce of a uniqve solutfon just in prcbiems~ 
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A, = -2 (p -I- 1) (p - 1)-l (p sin8 a - sin2pa) A’lAx 
According to (2.1) and (2.3) 

me* (p, 0) = -4 (p - I)” (p* sin2 a - sin2 pa) AelAA1 

By u&r&g Hoolce% law, and taking account of (2.1) and (2.31, we find 

(2.4) 

=~(,;i)(p-I)-?& (2.51 

Eliminating A, in the relations&~ (2.4) and (2.51, we arrive at the fundamental 
Wiener - Hopf equatiun 

Q- fP) = -2 (p + 1)-l @a sin2a - sin2 pa;) A-W’ (p) (2.6) 

which we rewrite as 

W @) = @ + 1)“’ tg pnG (p) @+ @) 
G W = -2 ctg pn (p2 sin2 cz - sin2 pa) A” 

(2.7) 

we set 

‘OS t 

h, n/Z<a<n 

1, O<a<n/Z 

llccording to fl, 6) and (L7), the fimction @’ @) is analytic in the half-plane 
Re &I < 0, and the hnction CD- (p) in the turlfip&ute Re p > - A,. 
Let ua examine the contour L assisting of the imaginary axis with the exception 

of a small aymrnetrfc section aramd the origia, and a IsA samicircle of small radfus 
with cc&r at the origin (Pig.4). in the plane of the comphx variable p. The 
dtrsctlatoftiaveaing~caatclurarpwawiLthsctirsctloaoftheimagiaruyaxitThe 
domainsonthel~andrightogttrtcoatour~bedrrnotadby D+ and L)-. 

The fhnction G @) has neither ZCKY nor poles on the contour & and tends to 
unityalongitas p-tw. Therefore, the repreacntation 

is valid. 
By using the repretaentatton C61 

ctg P - P-lK’ ($0 JL- @)* 

(2.6) 

where the ftnwdia K+ (p) and K- (p) are analytic, have no zeroa~ and satisfy 
the conditia 

(2.9) 
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we obtain by taking care of (2.7) and (2.8) 

(P + 1) @- ti)K- (P) G- (PI = p [K+ (p)l-‘G+ (p)@+ (p) (p E L) ( 2.10) 

The function in the left side of (2.10) is analytic in the domain D- and the function 
in the right tide is analytic in the domain D +. On the basis of the principle of con- 

tinuous extension they equal the very same function which in analytic in the whole 
plane p. 

Let us find this single analytic function. Starting from the relationships (1. s), we 
find @ + 00) 

@- (P) - (Zp)-“XI, a+ (p) - (- p/2)“‘& (2.11) 

On the basis of (2.8), (2.9) and (2.11) it follows from (2.10) that the single analytic 
function is Co i- clp (co, c1 are constants to be determined). 

Taking the conditions resulting from (1.3) into account 

CD- (0) = Y, C(1) = M 

by using (2.10) we obtain a system to determine CO and Cl 

Hence 
YK- (O)G- (0) = cO, 2MK- (1) G- (1) = c0 + cl 

Y C 2a+sin2u 

I 

=/a 
co = 

2 (as - sins a) * Cl = 4Mn-W- (1) - co 

The solution of the functional equation is written as 

W(p) = co + ClP 
(P+1)K-(P)C-(P) ’ *+w = K+ @#co + w) 

PC+ (PI 
(2.12) 

3. A n a 1 y s i L o f t h e s o 1 u t i o n. Let us evaluate the stress intensity 
coefficient at the crack apex. We find 

a,- (p) w c&i* (3.1) 

from the first formula in (2.12) as p + 00 
Comparing the asymptotics of the function o- (p) in (2.11) and (3.1) and going 

over to dimensional variables, we obtain 

& = 4 ($)‘” G- (1) MI--‘/~ - ( $t;;2F )I” yZ-‘h 

Let us study the behavior of the stress oe for 8 = 0, r --f 0. 
Using the second formula of (2.12), (2.6), the lemma, the Mellin inversion form- 

ula, and the theorem of residues, we arrive at the relationships 

oa (r, 0) + 0 (0 < a < a / 2) 

00 (r, 0) - 
2 (sin2 ha - h2 sin2 a) F (1 + h) co - hCl 
2ucos2ha+sin2a l?(r/s+h) G+(-h)h(h-I) 

+1 

(n/2 Co < 4 

As a result of investigating the behavior of the stresses for 0 ( 8 ( a and r --t oo 
we obtain 

(5, (r, 0) - (* 
- em h) co.5 e - (2~ + sin 2a) sin 9 Y 

sins a - as I+ 
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Zsin(u-26) &8 
siaa-uaaa -F 

%e 0-t 0) - 
2sin0sin(a-0) M 

sina-aaa -Fg ue(r,0) = 0 -$- 
i ) 

As should have been expected, these formulaa agree with the known sohtton of the 
corresponding canonical rrfsldlular problem. 

Thelimttcases a 312 n/2 and a = x of the probkm considered were studied 
earlier by other authors. u - 91. 

The author is grateful to G. P. Cherepanov for attention to the research and for 
usdill disxwdon of the rMult% 
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